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On Elastic Plastic Deformation

in Beams under Dynamic Loading1

by J. A. Seiler
2

Abst at: This paper gives an elastic-plastic analysis of a

simply supported uniform beam subjected to a uniform pressure

applied as a pulse of rectangular shape. Plastic flow is taken

account of only at a plastic hinge at the mid-section of the

beam. The resulting permanent deformations are compared with

those predicted by a "rigid-plastic" type of analysis in which

elastic deformations are neglected. Because of the failure of

the elastic-plastic analysis to consider the plastic deformations

at cross-sections other than the middle section t the two solu-

tions do not agree even at large load values. The elastic-

plastic results are in better agreement with an incorrect rigid-

plastic treatment in which plastic hinge action is assumed to

occur only at the mid-point.

I. Introduction

There has recently been considerable study of the plastic

deformations of beams and frames under dynamic loading, on the

basis of the "plastic-rigid" hypothesis [1, 2, 3, 4, 5, 613 .

1. The results in this paper were obtained in the course of
research conducted under Contract N7onr-35801 between Brown
University and the Office of Naval Research.

2. Research Assistant, Division of Applied Mathematics, Brown
University.

3. Numbers in square brackets refer to the bibliography at the
end of the paper.
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According to this hypothesis there is no curvature change at a

given section of a beam unless a bending moment of a certain

magnitude is maintained at that section. Where this moment

(called the limit or fully plastic moment) is maintained, "plas-

tic hinge" action can occur as long as the bending moment main-

tains its limit value. The neglect of elastic deformations is

permissible when the loads are of such a magnitude as to produce

plastic strains large in comparison with any possible elastic

strains.

In order to determine the range of loading in which the

neglect of elastic deformations is permissible, it is desirable

to make analytical studies in which elastic as well as plastic

strains are considered. One study of this type has been carried

out by Bleich and Salvadori [7) for a problem of impulsive

motion (specified initial velocity) of a uniform beam with free

ends. The present paper treats the elastic and plastic motions

of a simply supported beam subjected to a specified dynamic

load, namely a uniformly distributed pressure applied as a

pulse of rectangular shape. The analysis used here is essen-

tially the same as that of [7]. The initial elastic motion is

represented as a series of eigenfunctions. The initial wholly

elastic phase terminates when the bending moment at any section

reaches the limit moment magnitude* Thereafter at such a sec-

tion the moment is held constant at the limit moment magnitude

and the previous condition of slope continuity is relaxed* Thus

"plastic hinge" action occurs at such a section as long as the

relative angular velocities across the section are in the same

4Ali
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sense as the moment at the hinge. The subsequent elastic motions

of the segments separated by the hinge section are then repre-

sented by a new series of eigenfunctions corresponding to the new

boundary conditions, with amplitudes chosen so that the elastic-

plastic solution matches the wholly elastic one,

The plastic-rigid solutions of beam problems show that

there are in general not only plastic hinges at fixed cross-

sections, but also either travelling plastic hinges or finite

plastic regions of changing size. Although the solution of

elastic-plastic problems by synthesizing eigenfunctions can

clearly be carried out when one or more fixed plastic hinges are

present) this method is not applicable when moving hinges or

elastic-plastic interfaces occur. Thus in [7] it is assumed

in the numerical example treated that plastic hinge action occurs

only at the center of the beam. This is certainly correct for

low enough initial velocities and incorrect for very high ini-

tial velocitieso Unfortunately, since the plastic-rigid type

of analysis requires the initial velocities to be high in order

for the analysis to be appropriate, it is evident that the

validity of the plastic-rigid analysis cannot be assessed by

comparison with the results of a "single-hinge" type of elastic-

plastic analysis. In [7] Bleich and Salvadori compared the

deformations of their elastic-plastic solution with those of a

fictitious rigid-plastic solution in which a plastic hinge was

assumed to occur only at the center, the two halves of the beam

moving as rigid bars. Their elastic-plastic results were found

to coincide at high initial velocities with those of this
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"single-hinge" rigid-plastic solution. This is clearly to be

expected since both solutions would be correct for a bar suffi-

ciently strengthened at sections other than the middle section.

The simplest case to which the above method.applies is

the one degree of freedom system, illustrated by a mass on a

spring. This problem has been thoroughly worked out by Brooks

and Newmark [8], and will be described here to illustrate both

the general method of elastic-plastic analysis and the expected

relation between the results of this analysis and those of the

simpler rigid-plarstic analysis.

Consider the system shown in Fig. 1. The spri-ng force-

displacement curvet according to the above method, is taken as

shown in Fig. 2, and for simplicity, we consider a rectAngular

pulse shape as shown in Fig. 3.

If x is the displacement of the mass, p is the load

intensity, and k is the spring constant, then the equation of

motion of the mass m, as the load is first applied is

m = p -kx (1)

subject to • x(O) = x()= Or 2

'where the dot denotes time differentiation. The system (1),

(2) has the solution

x = (1- cos t). (3)

The system reaches its maximum elastic response when.

X = Xy, the yield displacement which occurs at time t = ty

e
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given by

t arc-cos (a)

where we define the dimensionless parameter L to be

p

At time t = ty we have

x yx= Xy

/ (5)

which are used as initial conditions for the new equation of

motion of the mass in the plastic range, i.e.

mx= p - kxy. (6)

Equation (6), together with initial conditions (5) has solution
p-kxy 2 2kt-t) y 7P Ym (t - ty) + 7( y 7

At time T the load ends, at which time the velocity and dis-

placement of the mass are:
2 - Ykty)2 P /k 2S m ( ; t+ ty ) + x (8)

p - - .

m Y 1V

The equation of motion of the mass now becomes

mx = - y (9)

subject to (8) as initial conditions. The system (8), (9) has

solution
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'Ix -t 2- . + P s(pm - ky ty2

2mm (C" - t- t) + Xy.L~~~t

pkx t : 2 + p ('t ) +

(10)

To find the maximum response of the system, we set x = 0

and solve for t, insert this back in (10) and obtain an expres-

sion for the final maximum response XF:

kx y- 2 (Y) t 2  I2 l txF= m 2 +)

+ (2 LL + 1)] (11)

We now define a dimensionless pulse time C = 1 T

in terms of which (11) gives the dimensionless maximum displace-

ment XF as
mx F 2(XF)EP.= " F =.-M, _ [i -[ arc-cos

(X)EP kXy' 2

+ 2- [- arc-cos 1) -) + 2 + 1 (12)

where the arc-cos function is restricted, of course, to its

principle value.

It is evident that for low enough load intensity and/or

short enough pulse time, we might not have yielding, or that

yielding might occur after the load is removed. The analysis in

this case is much the same and will not be presented here. The

resulting dimensionless deformation is

(XF)E.p [2(1 - cos C) + J] (13)
kx,,
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here is restricted to have a small enough value so that yield-

ing will not occur during the force pulse.

Consider now the plastic-rigid problemg i.e., with a

spring-force displacement curve as shown in Fig. 4. In this

case a similar analysis yields the following expression for the

dimensionless maximum displacement:

(XF)Rp = 111 (L - 1). (14)

Figure 5 shows curves of (XF)E.P. vs load intensity i

for various C, and also the curve of (XF)R.p. vs. .

The criterion for the validity of a plastic-rigid analy-

sis of this problem, following that put forth in [1], is that

we must have 2-y(XF)Rop. >> I kxy2

Relation (15) states that the plastic work (i.e., yield force

multiplied by the plastic deformation) must be much greater than

the maximum elastic strain energy that can be stored in the

spring. Relation (15) can also be written in the following form:

WP = 2
- (1 - ) >> l, (16)

where Wp and WE are, respectively, the plastic work and the

maximum elastic strain energy.

It is seen from Figs. 6(a), (b), (c) that the validity

of the rigid-plastic analysis of this problem cannot be ascer-

tained from the magnitude of the energy ratio Wp/WE alone. The

validity must also depend upon an inequality being satisfied by

a
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one of the parameters , 4. In other terms, one cannot make a

positive statement that Wp/WE being greater than some number

implies that the error involved in the rigid-plastic hypothesis

is less than some preassigned value. The statement that can be

made is that given a fixed ratio of pulse time to period, a

value of WP/WE can be found so that the error is less than any

preassigned amount.

Figure (6) shows plots of percent error vs. p, for various

WP/WE values. Figure 6 may be interpreted as follows. If, say,

Wp/WE = 10 and jL = 13, then the error involved in the plastic-

rigid assumption will always be less than 15% provided the pulse

time is larger than the value obtained from (16) namely

= .253, which implies a pulse time of .01+0 periods.

II. Elastic Response of Beams

We now proceed to the discussion of a simply supported

beam of mass m per unit length, and length t as indicated in

Fig. 7, acted on by a uniform load of intensity p per unit

length. We again consider only the rectangular force pulse

shape as in Fig. 3. The equation for the displacement y (x,t)

of the beam is, (neglecting the effects of shear and rotary

inertia)
(EIyxx)xx + mytt = p (17)

The initial and boundary conditions are

y(x,O) = yt(x,O) = 0

y(Ot) = Yx(Ot) 0 (18)

y(.,t) = Yxx(-tt) = 0.

pr'-
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The eigenfunctions of the homogeneous system are

Tn(X) = sin MA,

and we assume a solution in the form

00
y(xpt) = E Pn(x)qn(t), (19)

n=1

where each generalized coordinate qn(t) must satisfy the

Lagrangian equations

d T () + .= Qn, (20)
Nq 8%

and where

T = (Y dx '  (21)

V = (Yx)2 dx, (22)

jo

Qn= P(xt)Tn(x)dx = P I sin MA dx. (23)

Upon substitution of (21), (22), (23) into (20) we find

qn(t) = -- (1 - cos X2 t), (24)
nmitX4

where

n 1, 3, 5 see

X I+ R k

Hence our solution for y(xt) becomes

y(xlt) =i ZOD sin cs2 2(yix , x5EI n=l,3( O t). (2)
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This solution is valid until the bending moment reaches

its capacity value Mo at the center of the beam. In order to

find the time to at which this occurs we set the bending moment

M(xjt o ) = EIYXX(Xlt o0) equal to Mo at x =t/2. We obtain

4pt?,  0 "-i n 2 n2to

M nl,3 n3,E (i - cos 0)" (26)

We now define dimensionless load and time parameters 1.

and q to be 2 2

No 7 a
itt

Then (26) becomes
n-l

3 D2 (3-1E = Q 3 cos n 2io (27)
3 ~ n=113 n

where qo = x2to/ke2

The right-hand side of Eq. (27) is plotted vs. no0 and

for each p value the intersection of left- and right-hand sides

gives the time for the moment to reach Mo at x = /2. Figure 8

shows a plot of q versus the load parameter . At time 9 = qo

the velocity and displacement of all points of the beam are

given by:

y(xjt0 ) = E sin sin r f (i- cos n 2 o) (28)

2 0

Y(xtt o )  E 2

y(x 3 -sin sin n no. (29)7 3Efk n=1,3 n
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Now a new problem must be solved; we have a beam of

length t/2, simply supported at one end, with zero shear and

constant moment Mo at the other end, and with the above displace-

ment and velocity as initial conditions (Fig, 9)e

This problem as it stands does not lend itself to solu-

tion by a sum of eigenfunctions, since the boundary conditions

are non-homogeneous. However, the problem can be separated into

two parts. We seek a function y(xjt'), where tO 5 t - to, such

that 2p 1

kt~t EI

y(Ot') y(0,tt) = 0 (30)

= y (,t 0Yxx( t ) xxx 2
2V

to which we add a particular solution satisfying the non-homo-

geneous boundary conditions of zero shear and constant moment

at the free end of the beam. The desired solution is
0o b 2 t b 2tIn n

y(xt') (A + Bt)x + Z fn()[An sin = + Bn cos n
n=l ktkr

+ n

EIb (sinh n + sin - 2

3 2 (31)

where A, B, A En are constants to be determined from the

*i initial conditions, W(X) are the eigenfunctions of the half

4 V
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beam, and bn are the eigen values:

sin sinh - x + sinh sinbx

bn  bn
tanh -=tan , or

b R (4n + 1).

Proceeding in the usual way for determining the coeffi-

cients, we find: -1

OD - ) 2 2 & + ll7)MoZ
A E (l -( cos ni) + 11) 0 t

R7EI n=1,3 n- 0 1680 El

96pt, 0 2B E z2~. sinn5 EI n=113 0M-
b ()T2

16 /7 pe(-)n cosh O 1) sin m 2

3 Eibn(sih 2 n _ sin2 &) m=,3 m(m 7t bnj)

b rm-i1+ b 12

16 2 ptb n(-l)n cosh 0o (-1) -  (1- cos m20)

B 3E1(sinh2 n Sin2 b)

2 b b4M2 sin n cosh n(I, + 8)

+ ... ..0_ _ . .. ._ ._ _ 7-

E 3  2 b 2 b L
bn (s(ih sin n)

bn b
jg(sinh -sin n) 4

4p
b 2 - n
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This solution applies until

t ~

at which time the load is removed. For convenience we define

a dimensionless quantity C by A/kt?; physically is 2n

times the ratio of pulse duration to fundamental period, Then
at time q = C the velocity and displacement of all points of the

beam are given by
k2(. - q) kt2(C n) kz2(-.no)

y(xl 2 (A + B - ) x + *(x, 2 )
7E 7ET -

OD b 2(C - no) bn2 (- 10)+ Z n(X)[An sin n + Bn cosn=l 7 2 7 E2

+ b bn (32)

EIbn (sinh n+ sin

yt,(x no) Bx + ; k2 -(C )

I27

+ CO ( X)b n2 [no b n( _ no) b n2(C - no)
E 2 2 [A sin 2 - s3n

n=l k2 s k2

where *(xlt') is the particular solution of (30).

The system (30) must now be solved with p = 0, subject

to the initial conditions (32) and (33). With p = 0 (30) has

the solution
00 b n2t"Ibn2I

y(xt") = (A + B't")x + Z Tn(x)(A sin + o b 2 t"
n=l 2

Mo 2

042~"
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where t" = t - T. The constants Aft B', A 1 and Bn must be

determined so as to satisfy initial conditions (32) and (33).

Proceeding as before we find

A' = 96pL 3  -I (I-con2qo)

JTEI n=l,3 J
)2

+ (C- q) Z -1) sin n q + Mo 3(j-S+~% 39
0 n=1,3 n5  0 EY 2nt

n-i
96p.t a (-1) = sin n0 + 7t(O - 8)(C - qo)

BI= I z 5 3211,KEkn=1,3 n

bm2 (- ob 2 ( 0
Am = Am cos .... . Bm sin

Ibin2 ( bin2 ( - o 0) 4pt

44 sinh bm- sin b

2b)bm2 b
ED3(sinh bm - sin2 bm

- sin acosh -b2 m (34)
E~m3 1i+h 2-m

Now plastic deformation at the hinge will cease when the

relative angular velocities of the two half beams at x =.L/2

become equal, i.e., when t = 0. Howevero after taking
- -x-t /2

one x and one time derivative of the solution the eigenfunction

series no longer converges. To avoid this difficulty, the slope

yx(/ 2 ,t) is plotted as a function of time and the maximum point

4 - --
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of the curve is determined by inspection.

These times are used to calculate the final mid-point

deflections which is plotted as a function of the load intensity

1L for several pulse times in Fig. 10. The final central angle is

plotted in the same manner in Fig. 11. The results from a plas-

tic-rigid analysis of the beam [2) are included for comparison.

For small enough load intensity values and/or short

enough pulse times, the bending moment may reach Mo after the

load has been removed, or not at all. The analysis in this case

is similar to that above and will not be presented here. The

results are included with those in Figs. (10, 11).

III. Discussion:

The criterion developed in [1] for the validity of a

plastic-rigid analysis for this problem takes the form

2Mo0  >> - (35'

where o is the final central angle of the beam. Inequality (35)

may also be written in the following forms

Wi. f( ) =wp
>> (36)

7C E

where f(p) is the dimensionless parameter involving the final

central angle shown in Fig. (11).

Figure (12) shows a plot of the differences (expressed

as percent) between mid-point deflections of the present elastic-

plastic solution and those given by the single-hinge and correct

rigid-plastic solutions vs. Wp/WE, for values of /T equal to

4i.. ...
. . ..... ... J" - -- A .
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1/2 and 2. T is the fundamental period of vibration of the beam*

It is seen that for Wp/WE becoming large, the single-

hinge rigid-plastic solution differs very much from the correct

rigid-plastic results and is presumably wrong since violations

of the plasticity condition would occur at sections other than

the mid-section. The approach to agreement as WP/WE becomes

large of the present elastic-plastic solution with the single-

hinge rigid-plastic solution is to be expected on the basis of

the energy hypothesis for the validity of a rigid-plastic analy-

sis: both solutions are correct (for very large Wp/WE ) for a

beam strengthened so that plastic flow takes place only at the

mid-section where the bending moment is equal to Mo . The agree-

ment at large WP/WE values between the single-hinge rigid-plastic

solution and the present elastic-plastic solution can thus be

taken as an indication that the elastic-plastic results are

incorrect in the range of large Wp/WE. However, the elastic-

plastic analysis gives accurate results for fairly low load

intensities, where the deformation is mainly elastic and plastic

deformation occurs only at a single hinge at the center of the

beam.
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